resembles Oreodon，but in this genus the internal convolution is continu－ ous with the supraorbital．＊

Explanation of Plate．

Brain of Procamelus occidentalis from a cast，two－thirds the natural size． Fig．1．View of the left side．
Fig．．2．View of the superior surface．
Fig．3．View of the inferior surface．

On the Vertebrata of the Bone Bed in Eastern Illinois．

By E．D．Cope．

Read before the American Philosophical Society，May 20， 187π.
It is already well known that a few years ago，Dr．J．C．Winslow dis ${ }^{-}$ covered in the Eastern part of the State of Illinois，a bone bed containing the fragmentary remains of reptiles and fishes．From some of this material placed in my hands，I identified four species of Vertebrata，two Rhynchocephalian reptiles，one a Dipnoän and one Schachian fish \dagger ．These were named，Cricotus heteroclitus，Clepsydrops collettii，Cerutodus vinslocii， and Diplodus sp．indet．It was stated in connection with the descriptions of these，that they indicate Triassic or Permian age for the bed in which they were found，since on the one hand Reptilic have not been found in the coal measures，nor on the other haud has the genus Diplodus been found above the Carboniferous series of rocks．

Doctor Winslow，in response to my inquiries，has sent for my examina． tion another series of these fossils，which contains several species not previonsly known from the formation．Subsequently William Gurley discovered another exposure of the bone bed，and obtained a number of useful specimens，including some of species not previonsly known，which he also kindly placed at my disposal．To both these gentlemen I desire to express my sense of the obligation under which they have laid me． Descriptions of some of the species are now given ；a complete account of the fauna is reserved for an illustrated memoir now in preparation．

Strigilina lingulffohmis Cope，gen．et sp，nov．Petalodontidarum．

Char．Gen．The tooth is a flat osseous plate whose outline is pyriform． the wider end recurved in one direction as the transverse cutting edge ：the other extremity narrowed and recurved in the opposite direction as the root．The side from which the cutting edge arises is crossed by numerous plice from the base of the root to near the base of the cutting edge；the opposite side is smooth．

The genus appears to resemble most nearly the Climaxodus of MeCoy．
＊Leldy，Fixtinct F゙auna，Dak．and N゙くbraska，pl．xiv，fig． 11.
＋Procedings Academy lhiladelphan，1sin．p．404．
especially such species as the one figured by T. P. Barkas in the Atlas of his Mannal of Coal Measure Paleontology Pl. I figs. 35-7 (Manual p. 20). From the latter it differs in the transverse instead of continuous relation of the ellge and root to the main body of the tooth; the root does not appear to be differentiated at all in Climaxodus, while it is distinctly marked in strigilina.

Char. Specif. The plicate surface terminates behind in a median angle, at the base of the root. There are eight plicie which all cross the plane, excepting the sixth, which is interrupted in the middle by the strong angulation of the seventh, which touches the fifth. The lateral extremities of the riglit are in contact with the base of the recurved cutting portion. The latter is convex transwersely, learing a smooth surface between it and the eighth plica. The smooth side of the tooth is shining, and there is a shallow fold which passes round its side and crosses just at the base of the recurved cutting lamina. The edge of the lamina is unfortunately broken.

Total length of plane.. . 008
Width at base of cutting lamina................................. . 006
Widtlı at base of root.. . 004
Thickness of plane portion....................................... . 0015
This species was found by William Gurley.

SELACHII.

Diplodus ? compressus Newberry.
A few teeth of Diplothes found, are none of them perfectly presersed. One with a lateral and median denticles nearly complete, agrees pretty well with the species cited.

DIPNOI.

Ceratodus vinslovil Cope Proceed. Acad. Philada. 18\%6, p. 410. Ceratodus paucicristatus Cope, sp. nov.

The single tooth representing this species is narrow in the transverse direction, but stout in vertical diameter. But four ridges are present, all of which hare a single direction, but the shorter ones are the less oblique to the long axis of the tooth. They all extend into the inner border, but become low as they approach it. Distally they are quite prominent, but do not project very far beyond the emarginate borler between them. The inner border is plane and vertical, and without ledge ; the inferior surface is concare in the transverse direction. The surface of the tooth is minntely and elegantly corrugated.

Length from base of second rib................................ . 0170
Depth at base of second rib................. 0045
From the collection of Dr. J. C. Winslow.
Ctenodus fossatus Cope, sp. nov.
Represented by a nearly perfect tooth of a general narrow and vertically thickened form. There are five crests, the largest three extended in one
direction, and the other two in the other. Between the last of the latter and the inner border is a mdiment of another in the form a rugosity. None of the crests tonch each other at their bases. At their extremities they curve rather abruptly downsard, and do not project beyond the inferior plane, from which each one is separated by a cleep fossa, whose mouth is a notch in its base. The crests are coarsely dentate, there being three or four teeth on each, and the grooves between them are marked by coarse transverse undulating groores. The inner border is a deep rertical plane ; the inferior face is narrow and concave in transverse section.

Total length

.032
Greatest width............. 00%
Depth at middle
.006
This is the first species of this carboniferous genus fomnd at this locaiity. It differs from the C. serrutus Newberry in its narrow form, small number of ridges, and the very slight prolongation of their extremities.

Ctenodes aurleyanus Cope, sp. nor.
This species is indicated by a portion of a tooth, which leaves the number of the ridges a matter of uncertainty. On this account its description might have been postponed, but that the distinctness of its characters, render it clear that it cannot be placed with any of the other species. The crown, as in Ceratodus puncicristatus, is narrow and rather thick; but three crests are present, all radiating in the same general direction, the longer close to the inner border. There was not more than one additional crest, or one and a rudiment, and these have probably the same direction as those which are preserved. The crests are sharp, elevated, and coarsely dentate ; they are not decurved at the extremity, but cease abruptly with a projecting denticle, beneath which the hasis is excavated by a shallow fossa. The inferior face is slightly concare, the internal wall vertical.

$$
\text { Greatest width.. } 008
$$

$$
\text { Depth at inner border....................................... . . . } 005
$$

This Cterodus is dedicated to William Gurley, to whose eflorts science is indebted for this and several other interesting palcontological studies.

CROSSOPTERY゙GLA.

Peplominea arctata sp. nov.

Based on an unsymmetrical bone, bearing teeth, to be referred to the position of pharybgeal, pterygoid, palatine, or hatf of the romerine elements. From the respmblance of the teeth th those on the palate of $P^{P}\left(P^{\prime}\right.$ lorhina anthrarina, I refer it provisionally to the corresponding position in the month of a second species of that genns. This course is open to modification should shberquent investigation require it.

The bone is plate-like and diamond shaped, with the longer angles both recurved. The convex surface is thickly studded with tecth, which are not in contact with each other. Their size increases from one side of the
bone to the other, and still more, from one extremity to the other. The crowns are swollen at the nearly sessile base, and contract rapidly to a conical and unsymmetrical apex. Those of the smaller teeth are more conical, those of the larger more bulbiform. One side of the latter is slightly concave below the apex. The surface is shiny and distinctly groored. Fractured crowns do not display any central carity. There are sixty-five teeth on the plate.

Length of plate... . . . 013
Width on short border...................................... . . . 00 i
Transverse width... . . 00 i
Depth. 002
Other teetif.
Teeth of four other species lave been found by Doctor Winslow, to which I allude ouly briefly, as their characters are not sufficient to enable me to distinguish them from those of known genera and species.

Species one. This is represented by a fragment of mandibular ramus, which supports six teeth, all of which have a greater or less part of their apices broken away. They stand in close juxtaposition, and are of equal sizes. The basal half or more of the crown clisplays the character of deep inflections or grooves. These teeth belong to some sauroid fish, or to a batrachian.

Specie two. This is also represented by a portion of mandibular ramus which supports four teeth. The anterior of these is larger, and is separated from the others by an ectentulous space. Their crowns are rather elongate and are compressed, having cutting edges fore and aft. Both edges contract to the apex, but the anterior the most so. There are a few shallow grooves at the base, but they appear to be superficial only. These teeth might belong to either a reptile or a batrachian, and it is useless to attempt to distinguish them by a name from the many genera of both classes that resemble them.

Species three. Two stout, slightly flattened, conic teeth without cutting edges, represent this species. They are anchylosed to a very thin plate of bone, a part of which adheres to each. The base is oblique, expanding more in one direction than another. The greater part of the crown is marked by closely placed parallel grooves, which are much more numerous than in the species No. 1. They are larger than these or No. 2, measuring .004 in diameter at the base. They may belong to any one of a number of known genera of Batrachia, or Sauroid fishes.

Species Io. 4. These are more numerously represented than the others, occurring in Mr. Gurley's collection as well as in Dr. Winslow's first collection. There is nothing to prevent their reference to the Lacertilia, and I have thought that there is some probability of there being referable to the Clepsydrops collettii. They are not rooted, but are anchylosed in a shallow concarity of the jaw bone, which is only distinguished from that for the adjacent tooth by the corresponding scolloping of the lower margin
of the jaw. The opposite margin is a little more elevated and is more closely anchylosed to the base of the tooth. The crown is conic, subround in section, and curved backward. There are no cutting edges, and the base is a little flattened in front and in behind. On each of the faces thus formed, there is an open, shallow groove, sometime obsolete. There are no other grooves nor sculpture on the teeth.

Each specimen of this tooth is single, and anchylosed to the same (corresponding part of the jaw. The tooth is at one extremity of the alveolar groove; above the opposite end is the basis of a bone attached at right angles (? prefrontal or malar). One of the specimens displays an extensive pulp cavity.

> Length of crown. ... 004 Diameter at base...........

ACTINOPTERI.

In the transactions of this Society, published in 18\%1, and more fully in the Proceedings of the Ameriean Association for the Adrancement of Science, at the meeting of $18 \% 1$ (published early in 18\%2), I showed that the supposed order of Ganoids as defined by Müller, is not a homogeneous or natural association of types. I pointed out that the recent genera must be distributed between two divisions of fishes of high rank, riz.: the Crossopteryyia, and the Actinopteri. The last-named division was believed to include the fishes previously known as Chondrostei and Teleostci. Some of the so-called Ganoids of Müller and Agassiz were referred to different subdivisions of the Actinopteri. In a paper recently published in the Proceedings* of this Society, a better expression of natural affinities was thought to be obtained, by regarding the Crossopterygia, the Chomdroxtei, and the Actinopteri, as forming a single sub-class of the class Pisces, under the name of Hyopomatr, the other sub-classes being the Dipnoi, the Selarhia, and the Holocephali.
I had already referred Phaneroplenront to the Dipnoi, when Dr. Günther's and Prof. Huxley's researches into the structure of Ceratodus forsterii led them to place this genus also in the same sub-class. Günther also refers the fossil genera Dipterus, Chirodus and Comehodus to the Dipnoi, and with these must go Ctenodus and its immediate allies. The Polypteritue and Colneranthide, which were arranged by Huxley, with the preceding forms in his sub-order Crossupterygia, \ddagger are clearly Hyopomata, having well developed hyomandibular and maxillary bones, as well as characters of the pectoral fins equally wanting to the Dipnoi. It is thus evident that the division Crossopterygiu, as left by Huxler, camot be maintained, but that it must rest entirely on the definitions given by me in the pupers above quoted, where the two families mentioned were the only ones referred to it. It is possible that a strict adhesion to the law

[^0]of priority will require that the name Ganoidei should be retained for this division.

The tribe Artinopteri as left in my latest paper above cquoted (May, 18\%i), has slightly different boundaries from those originally prescribed for it, since the Chondrostei are now excluded from it. As then and now understood, it is nearly identical with the Teleostei of Müller, a name which I should adopt for it, were it not that some of his Ganoidei and numerous extinct forms with unossified vertebral column belong to it. For such fishes the name of Müller is too glaringly inapplicable to be employed.

After excluding the extinct genera of Hyopomatio which are clearly Crossopterygia and Chondrostei, there remains a numerous assemblage, whose relationships to existing types of tishes have never yet been ascertained. I refer especially to the families of the Lepidoides, Sauroides and Pycnodontex, of the Poissons Fossiles of Agassiz, and other forms subsequently described; among others, the Dorypterus of Germar. The only boud Which retained these forms in connection with the fossil Crossopterygian fishes, the rhombic and enameled scales, may be safely disregarded in riew of the important characters of the skeleton which declare their aftinities to be diverse; the more as some of the latter (Coldrunthidee) have rounded scales, and Leptolepis and other genera referred by Agassiz to the Sauroides, have crcloid scales. The heterocercal character of the tail of some of them, is of but little greater weight. I have already shown that fishes presenting this character (Lepidosteus, Amia) do not differ in other respects from other Actinopteri, while the still lower isocercal condition is often seen in the latter. Further, the extinct genera do not agree among themselres in this respect, some bring heterocercal, and some isocercal.

The question remains as to the proper location of the families just named, in the tribe Actinopteri. It has been impossible to discover all of the characters necessary to the fullest elucidation of this question, but the greater number of them have been satisfactorily ascertained. The following results are therefore approximations to the truth which I believe that future researches into the osteology will confirm. At the least they are much nearer to an expression of nature than any yet attained.

As regards the general affinities represented by the terms Physostomi and Physoclysti, there is no doubt that the Lepidoides and Saurroides exhibit the former. This is seen in the uninterrupted conjunction of the parietal bones (where it has been possible to observe the parts), and in the abdominal position of the ventral fins, and extent of the maxillary bone; as well as in the less important features of the absence of all ctenoid characters of scales and preoperculum, lack of spinous rays, etc. The Pyenodontide present in general similar characters, and add nothing which should separate them widely from the Lepidoid genera of A gassiz, especially the family of the Dapediuda. Like these, howerer, they approach nearer to the Physaclysti in the anterior continuation of the interneural spines as far as the skull. This character is found also in some Plysustomous fishes, i. e. the greater number of Characinida, the Elopida, Umbrida and some

Fematognathi. The Dorypteridice present a number of peeuliar features, approaching still more close! y the Physorlysti in their thoracic ventral fins.

We may now consider the relations of the Lepidoides and Sauroides to the known physostomons orders.

The scapular arch being suspended to the cranium renders comparison with some recent orders with a free scapular arch, unnecessary. The simplicity of the anterior vertebre leaves out of account the Nemutogmuthi and Plectospondyli. The only orders with which we can compare them are those represented by their old companions in the Poissons Fossiles, the Ginglymodi, the Halecomorphi and the Isuspondyli.

Although the Sinuroides included the genus Lepidosteus in Agassiz's system, I cannot find that any of the fishes of the two families under consideration possess the peenliar vertebre of that genus, which in part characterizes the order Ginglymorli. Neither have any of them the segmented maxillary bone. The real alternative is hetween the last two of the abore named orders. Now the principal skeletal character which distinguishes these two, is found in the pectoral fin. In the Hulecomorphi there are numerous basilar radii attached to a cartilaginous mesopterygium, in the Isuspudyli there are but three or four such bones sessile on the scapular arch. After examining a number of specimens of species of both the 1 gassizian families named, I have been unable to discover any basilar bones whatever, and have suspected that they were, in the complete skeleton, of cartilaginous character, Professor Agassiz figures this region in his restoration of the "Lepidoid" gentts Plutysmetu, and of the "Sauroil" genera Macrosemius and Cuturus. In these, he represents the small number of basilar bones characteristic of the Isospondyli, and placed in the close relation to the scapular arch, which is seen in the same order. A consultation of the numerons figures given by Agassiz, Thiolliere, and others, has failed to discover a single instance exhibiting the peculiar basilar pectoral bones of Amia. This could scarcely be so uniformly the case did such bones exist, so that with Prof. Agassiz restorations coinciding, I can only for the present refer these fishes to the 1 sursponvedyli.

Their other special characters are so numerous, that they must be taken account of in deciding on their ordinal relations. If we, for the present, distinguish the two families as did Ag gassiz, we include in the Lepidoides the generin with tecth en brosse or in a single row, and sulferpmal and obtuse; and in the Saturoides the genera with tectlo of unerqual sizes, some being large and raptorial, the others minute. Of the Lepiloid genera, Agassiz states that the rertebre are osseons in Lepitlotus, and says the skeleton of Amblypterus is osseous, without particularizing the vertehra. The posterior vertebree of Pothemixrms he states to be assified, while in Plutysumus, Tetreyonnlepis and Donedius, the centran are not certainly osseons. In all of these genera the nemral and hemal arehes are distinetly articulated with the centra. Plutysonmus, Dupedius and Tetragonolepis, present the important character of a series of basilar interneural and interhemal bones, the interneurals commencing in Ilfetysumes at the head.

This character separates these species widely from the other genera of the "Lepidoides."

As regards the "Suwroides," the vertebral centra are always represented as ossified, and the neural and hæmal arches articulated, with the possible exception of Thrissops* where the arches are represented as continuous; the same point is not certainly determined in Eugnathus. None of the genera which I have seen, have the basilar interneural and interhemal spines found in the Dapediidue, above mentioned, nor are they figured or described by authors.

In these characters of the two groups, there is nothing allying the genera to the Halecomorphi rather than to the Isospondyli. The absence of the basilar interhæmals from all excepting the Dapertiide is alditional evidence of Isospondylous affinities. The ganoid scales of most of the genera, do not separate them from the typical forms of this orter more widely than the Aropema, nor the vertebrated candal fin more widely than the existing Notopterus. The number of vertebre included in the axis of the caudal fin in the extinct genera is shown by Agassiz to be very variable. In Megulurus, this region resembles that of Amia; in Leptolepis and Caturus, the vertebre are not more numerous than in the saurodoutide, while in Thrissops the fin is homocercal, in the Agassizian sense.

As already remarked, the Pycnodontide present some points of resemblance to the Dapediudue. All the points necessary to a complete elucidation of their structure have not yet been observed, so that my conclusions are necessarily imperfect. A point of resemblance to the Plectognathi is seen in the cartilaginons space between the interneural and interhsemal spines and their respective fins; a space occupied in the Dapedidide and Dorypteride, by the basilar interneurals and interhamals. This character is however not universal in the Pyonodontide. Prof. Agassiz speaks (Poissons Fossiles) of a maxillary bone, which bears a few teeth, in this family. This character will distinguish it at once from the Plectognathi and all other physoclystous orders. The abdominal position of the rentral fins and unmodified anterior vertebre, indicate that these fishes may for the present be placed with the preceding, in the Isuspondyli. There they are well distinguished by the peculiar inverted chevron-like bones which protect the dorsal and lateral regions in front of the dorsal fin. Prof. Agassiz describes the vertelra of Pycnodus as osseous; M. Thiolliere figures some species as without osscous centra, a condition I have observed in some specimens.

The characters of the Dorypteritue are, according to the very full description of Messrs. Hatucock and Howse, \dagger more strongly peculiar. Although these fishes may be referred to the Physoclysti, on account of the thoracie position of their ventral fins, they present features which will not permit a reference to any known order. It has been shown that they

[^1]possess the hasilar interneural bones, which as I have pointed out,* only exist in the Physoclysti in small development in the Batrachider and occur in varions degrees of development in some Physostomi, being especially elongate in the anal fin of Amia. It is even possible that another element enters into the series connecting the nemral spines with the dorsal fin-rays. The pectoral fin possesses fourteen or fifteen basilar radial bones; a character which like the last, is not found in the Plectognathi; these fishes having but three or four such elements. These two points indicate a lower position than that of the latter order, and a relation to it similar to that which Amia bears to the Isoxpondyli. It goes to show that even among some of the earlier fishes, physoclystous characters were foreshadowed. I therefore establish a new orler for its reception to take its place at the base of the line of Physoclysti.

As a résumé of the preceding inquiry, the following table of the families treated of, with their definitions, is now given :

Order Isospondylit.

Physostomous fishes with distinct parietal bones; ummodified anterior vertebre; and three or four basilar bones of the pectoral fin. Symplectie and precoracoid bones present so far as known.
Fam. Sauroi side (Sauroites Agass. partim.)
Teeth of different sizes, the large raptorial ones mingled with small ones ; vertebral colnmon osseous ; no basilar internenrals or interhemals.

1. Caudal fin with many vertebre ; scales rhomboid ;-Pygoptertes, Eugnathus.
2. Caudal fin with few vertebre; scales rhomboid ;-Pechycormus, \dagger Suuropsis, Macrosemius, Belomostomus, Aspidorrynnchus.
3. Caudai fin with numerous vertebre ; scales rounded;-Megalurus, Callopterus, \ddagger Attickeopsis. \ddagger
4. Candal fin with few vertebre (in some instances apparently none); seales rounded ;-Cutur户и, Leptolepis, Ancedopogon, S Thrissops.
Fim. Lempotide, (Lepiloilles Agass. partim.)
Teeth simple, often obtuse, in one or many rows, without elongate ones intermixed; no basilar interneurals or interhemals; vertebre with the centra incompletely ossified ; \| (scales rhomboid; caudal fin vertebrated.)
Amblypterus, Puleonixrus, Eurynotur, Semionotus, L"pidotur, Pio'idophorme, Microps, Notugogus, Ophiopsis, Cosm-Nepis, Plempopholis.
Fam. Dapedin)e mihi.
Teeth uniform, obtuse ; vertebra with ineompletely ossified centra ; \|\| the interneural spines commencing at the head ; a complete series of basilar interncural and interhemal spines;- Platysomus, Dapelius, T'etragonolepix.
[^2]
Fam. Prcnodontide.

Tecth obtuse molar, covering the romer and palatine bones; no basilar interneural and interhæmal bones; cherron-shaped bones protecting the dorsal region, their branches extending on the sides ; abdomen protected by similar bones, which form plates on the median line ; interncurals continued far forwards.-Microdon, Pycnodus, Gyrodus, Mesodon.

Order Docopteri milhi.
Scapular arch suspended to the cranium; pectoral fin with numerous, (not more than fifteen known) basal radii ; ventral fins thoracic. Dorsal and anal fins with basilar internenrals.

Fam. Dorypterid.e.

Vertebral column osseous; caudal fin not or very shortly vertebrated. Interneural spines corresponding with the basilars on the abdominal, but not on the candal parts of the rertebral column. Ribs complex, united with abdominal dermal bones which form a series of median plates.
None of the Isospondylous families above described possess the dental characters of the Sourodontidee, i. e. the long fangs set in deep alveoli.

RHINCHOCEPHALIA.

Clepsydrops collettil Cope, Proceedings Academy, Philadelphia, 1876, p. 407.

This species proves to be the most abundant land vertebrate of the formation. It is represented in all the collections, sometimes by portions of individuals of double the size of the types. I. referred this genus to the Rhynchocephelia originally, although it possesses a few batrachian characters. The occipital condyles preserved in the present collection are simple and median, thus confirming the reference, were confirmation needed. A supposed sacral vertebra is free at both extremities, and presents on each side, just behind the articular extremity, a very large facet, extending from a rudimental diapophysis to the plane of the inferior surface of the centrum. The specific reference of this vertebra is not certain.

Clefsydrops vinslovil Cope, sp. nov.
This species is represented by a third cervical vertebra ; and probably by other centra, but in this one the characters distinguishing it from C. collettii are especially visible.

The inferior median line is a kecl, some distance above it, the sides of the centrum are full, rising in a longitudinal angle. There is no constriction or fossa below the diapophysis as in Collettii, The latter is anterior in position, is vertically compressed, and is curved forward for a short distance below. The posterior articular face is regularly funnel-shaped from the margin ; the anterior face has a broad recurved lip. This passes round the inferior margin, which is not projected forwards as in C. collettii. The
zygapophyses are well developed, and stand close together. The neural spine is compressed, and the basal portion points somewhat forwards.
Length of centrum... . 011

Clepsydrops pedunculatus, sp. nov.
Established on two vertebre obtained by Mr. Gurley, of a lizard of larger proportions than any of those belonging to the other species of the genus. One of these is a third cervical and the other is apparently : dorsal, both differ from corresponding vertebrie of C. collettii and of C. lateralis in having elongate diapophyses for the attachment of the ribs. These are present in the other species, but are either very short, or sessile. The third cervical has a broad reverted anterior lip-like margin of the anterior articular face, which resembles the corresponding part in C. luteralis in not being produced below. The median line is keeled, and there is a shallow longitudinal groove on the upper part of the sides. The posterior articular face is regularly funnel-shaped. The dinpophyses are very stout, and are directed a little downwards and strongly hackwards. The articular faces are single, look downwards and outwards, and are wide abore, and narrow below. The base of the neural canal is deeply incised, as in the other species.

$$
\begin{aligned}
& \text { Diameter of centrum, }\left\{\begin{array}{l}
\text { anteroposterior.015 } \\
\text { transverse } 0125 \\
\text { rertical. }
\end{array}\right. \\
& \text { Length of diapophysis above.. } 009 \\
& \text { Diameter of diapophysis \{vertical.................... . } 008 \\
& \text { (anteroposterior............ . . } 00.5
\end{aligned}
$$

The dorsal vertehre exhihits a longer and more slender diapophysis whose base is vertically expanted, and with a shallow fossa hefore and hehind. The superior half of the diapopinsis has a much greater anteropos. terior extent than the inferior. There is no recurved rim of the articular extremities, but the surface does not pass regularly into the foramen chorda dorsalis, but by an ahrupt descent at its mouth. The sides of the centrum are concave, and the inferior portion forms a prominent roundel rib.

$$
\begin{aligned}
& \text { Diameter of centrum }\left\{\begin{array}{l}
\text { interoposterior } 016 \\
\text { transverse } 015 \\
\text { vertical. } 016
\end{array}\right. \\
& \text { Jengilh of diatuphysis. } 00! \\
& \text { Width af neural canal. } 006 \mathrm{a}
\end{aligned}
$$

Cricotys heteroclitus Cope, Proceed. Acad. Phila. 18i6, p. 40.
GENERAL OBMERYATIONS.
After an examination of the first fossils from this fauna which came under my observation, I left the question undecided as to whether its characters pointed to the Triassic or to Permian age. The Reptilia and a Cerctodus pointed to the former ; the Diplodus pointed even to the coal measures. The additional evidence adduced in this paper, adds weight to both sides of the question. Of the fishes added, Ctenodus is a genus of the coal measures, and while Strigilina is new, its aftinities are to the Petalodont genera of that formation. On the other hand the reptilian character of Clepsydrops is established, and the number of its species increased. Now the coal measures hare nowhere disclosed reptilian remains, so far as we have determinations of a reliable character ; Batrachia were the only type of air breathing rertebrata known to that epoch. The present fauna must then be placed above the coal measures, and the horizon will correspond more nearly with the Permian than with any other embraced in the system.

From its most characteristic fossil, the bed might be called the Clepsydrops shale. Its position, according to Dr. J. C. Winslow, is near the top of the Coal Measures, and it is marked No. 15, in Prof. F. H. Bradley's section of the Coal Measures of Vermillion Co., in the Report of the Geological Survey of Illinois by A. H. Worthen, Vol. IV, p. 245. It is about one hundred and eleven feet, averaging different localities, from the summit of the series, and $2099 \frac{1}{2}$ feet from the base. Two insignificant beds of coal occur above it, and the following gencra of invertebrate fossils: Productus, Spirifer, Athyris, Terebratula, Hemipronites, Retzia, Zeacrinus, Cyathuxoniu, Discinu, Lingulu, Cardiomorpha, Oithocerus ant Nautilus. Several of these genera are found in the Zechstein, while others belong to the Coal Measures and below them.

On sume nevo and little known Reptiles and Fishes from the Austroriparian Region.

By E. D. Core.

(Rend before the American Philosophical Society, May 20, 187i.)
A number of interesting points in the distribution of our reptiles and fishes come to light from time to time, which serve to define with more precision the districts into which the Nearctic Realm is naturally divided.* The result of several of these, is to extend orer the entire Anstroriparian Region the range of several species heretofore supposed to be confined to portions of that district only. A collection formed at Kinston in Eastern North Carolina, in the North-eastern portion of the region in ques-

[^3]
[^0]: * May, 1ヶ7.

 * Memolrs of the Geologleal Survey, Great Britaln, Deeade X.

[^1]: *Description des Poiss. Foss. prov. d. I. Gisem. Jurass. d. le Bugey ; premiere livr. Thiolliere et Gervais.
 \dagger Quarterly Journ. Geolog. Society, London, 1870, p. 623.

[^2]: *Transac. Amer. Jhilos. Soc: 157, XiV, p. 1.51.

 + Vide I' heterurus and P.meroplerus Ag.
 \ddagger Thiolliere ${ }^{+}$Gervaix loissons Foss, de burey.
 Cone, Procredhes American fhllosophical soclety, 15月1, p. 53. These statements are derlved from Arasslz, Poissons Fossiles.
 - Agass. Folss. Fusslles, II. JI. D. Igg. 2.

[^3]: * See Bulletin No. 1 of the National Museum ; Check List of North Americau Batrachia and Reptilia.

